Course

Amazon SageMaker Studio for Data Scientists – Intensive Training («AWSB10»)

Learn to use Amazon SageMaker Studio to boost productivity at every step of the ML lifecycle.
Duration 3 days
Price 2'500.–
Course documents Digital original AWS courseware
Relevant Job Roles: Machine Learning & AI

Course facts

Key Learnings
  • Accelerating the preparation, building, training, deployment, and monitoring of ML solutions by using Amazon SageMaker Studio
  • Using the tools that are part of SageMaker Studio to improve productivity at every step of the ML lifecycle
Content

The three-day, advanced level course helps experienced data scientists build, train, and deploy ML models for any use case with fully managed infrastructure, tools, and workflows to reduce training time from hours to minutes with optimized infrastructure. This course includes presentations, demonstrations, discussions, labs, and at the end of the course, you’ll practice building an end-to-end tabular data ML project using SageMaker Studio and the SageMaker Python SDK.

Day 1
1 Amazon SageMaker Studio Setup

  • JupyterLab Extensions in SageMaker Studio
  • Demonstration: SageMaker user interface demo

2 Data Processing

  • Using SageMaker Data Wrangler for data processing
  • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
  • Using Amazon EMR
  • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
  • Using AWS Glue interactive sessions
  • Using SageMaker Processing with custom scripts
  • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
  • SageMaker Feature Store
  • Hands-On Lab: Feature engineering using SageMaker Feature Store

3 Model Development

  • SageMaker training jobs
  • Built-in algorithms
  • Bring your own script
  • Bring your own container
  • SageMaker Experiments
  • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning Models

Day 2
3 Model Development (continued)

  • SageMaker Debugger
  • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
  • Automatic model tuning
  • SageMaker Autopilot: Automated ML
  • Demonstration: SageMaker Autopilot
  • Bias detection
  • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
  • SageMaker Jumpstart

4 Deployment and Inference

  • SageMaker Model Registry
  • SageMaker Pipelines
  • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
  • SageMaker model inference options
  • Scaling
  • Testing strategies, performance, and optimization
  • Hands-On Lab: Inferencing with SageMaker Studio

5 Monitoring

  • Amazon SageMaker Model Monitor
  • Discussion: Case study
  • Demonstration: Model Monitoring

Day 3
6 Managing SageMaker Studio Resources and Updates

  • Accrued cost and shutting down
  • Updates

Capstone

  • Environment setup
  • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
  • Challenge 2: Create feature groups in SageMaker Feature Store
  • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments 
  • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
  • Challenge 5: Evaluate the model for bias using SageMaker Clarify
  • Challenge 6: Perform batch predictions using model endpoint
  • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline

Component of the following courses

  • Amazon SageMaker Studio for Data Scientists – Intensive Training
Methodology & didactics

This course includes presentations, demonstrations, practice labs, discussions, and a capstone project.

Target audience
  • Experienced data scientists who are proficient in ML and deep learning fundamentals.
  • Relevant experience includes using ML frameworks, Python programming, and the process of building, training, tuning, and deploying models.

Furthermore, this course is intended for the following job roles:

  • Machine Learning & AI
Requirements

The following course or equivalent knowledge is required:

    MLOps Engineering on AWS – Intensive Training («AWSS07»)

    3 days
    • Basel, Berne, Geneva, Lausanne, Virtual Training, Zürich
    CHF
    2'500.–
Certification

This course can be used as preparation for the following official AWS Certification: AWS Certified Machine Learning – Specialty

Download

Questions

Any questions?
First name
Last name
Company optional
Email
Phone
I would like to book this course as a company course
First name
Last name
Company optional
Email
Phone
Number of participants
Desired course location
Start date (DD.MM.YYYY)
End date (DD.MM.YYYY)

Choose your date

22
Apr
2025
24
Apr
2025
Lausanne
French
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
22
Apr
2025
24
Apr
2025
Virtual Training
English
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
22
Apr
2025
24
Apr
2025
Zürich
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
22
Apr
2025
24
Apr
2025
Berne
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
22
Apr
2025
24
Apr
2025
Basel
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
24
Jun
2025
26
Jun
2025
Geneva
French
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
24
Jun
2025
26
Jun
2025
Zürich
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
24
Jun
2025
26
Jun
2025
Berne
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
24
Jun
2025
26
Jun
2025
Basel
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
24
Jun
2025
26
Jun
2025
Virtual Training
English
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
23
Sep
2025
25
Sep
2025
Lausanne
French
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
23
Sep
2025
25
Sep
2025
Zürich
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
23
Sep
2025
25
Sep
2025
Berne
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
23
Sep
2025
25
Sep
2025
Basel
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
23
Sep
2025
25
Sep
2025
Virtual Training
English
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
25
Nov
2025
27
Nov
2025
Zürich
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
25
Nov
2025
27
Nov
2025
Berne
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
25
Nov
2025
27
Nov
2025
Basel
German
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
25
Nov
2025
27
Nov
2025
Geneva
French
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
25
Nov
2025
27
Nov
2025
Virtual Training
English
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.
Next date
22
Apr
2025
24
Apr
2025
Lausanne
French
Timetable
CHF 2’500.-
exkl. 8.1% Mwst.
CHF 2’500.-
exkl. 8.1% Mwst.

Further courses

Building Data Lakes on AWS – Intensive Training («AWSB04»)

1 day
CHF
900.–